
CSCC24 Week 6 Notes
1

Functor:
- Functor in Haskell is a kind of functional representation of different types which can be

mapped over. It is a high level concept of implementing polymorphism. Types such as
List, Map, Tree, etc. are instances of the Haskell Functor.

- Functor is a function which takes a function and returns another function.
- The Functor typeclass is basically for things that can be mapped over.
- A Functor is an inbuilt class with a function definition like:

class Functor f where
 fmap :: (a -> b) -> f a -> f b → fmap takes a function and a functor and applies the
function on the functor.

- Recall the map function. map f [x, y, z] = [f x, f y, f z]
The map function can be applied to nothing more than a list of values (where values are
of any type) whereas the fmap function can be applied to many more data types, all of
which belong to the functor class (e.g. maybe, tuples, lists, etc.). Since the "list of values"
data type is also a functor, because it provides an implementation for it, then fmap can
be applied to is as well producing the very same result as map. In fact, map is just a
fmap that works only on lists. The difference between map and fmap lies in their usage.
Functor enables us to implement some more functionalists in different data types, like
"Just" and "Nothing".

- E.g. Consider the below code.

Notice that map and fmap produce the same results on a list, but map doesn’t work for
types such as “Just” or “Nothing”, while fmap does.

CSCC24 Week 6 Notes
2

- This is the standard library map function (map f [x, y, z] = [f x, f y, f z]). Here’s an fmap
implementation:
fmap_List :: (a -> b) -> [] a -> [] b
-- "[] a" means "[a]" in types.
fmap_List f [] = []
fmap_List f (x:xs) = f x : fmap_List f xs

- This is the definition of the Maybe type from the standard library:
data Maybe a = Nothing | Just a
Note: There are two perspectives for the Maybe type:

- It's like a list of length 0 or 1.
- It models having two possibilities: “no answer” and “here's the answer”.

Here’s an fmap implementation:
fmap_Maybe :: (a -> b) -> Maybe a -> Maybe b
fmap_Maybe f Nothing = Nothing
fmap_Maybe f (Just a) = Just (f a)

- This is the definition of the Either type from the standard library:
data Either e a = Left e | Right a
It's like Maybe, but the “no answer” case carries extra data, perhaps some kind of
reason for why “no answer”.
Here’s an fmap implementation:
fmap_Either :: (a -> b) -> (Either e) a -> (Either e) b
fmap_Either f (Left e) = Left e
fmap_Either f (Right a) = Right (f a)

- Note: fmap must satisfy some axioms/laws:
1. Identity axiom/Functor Identity:

- The first functor law states that if we map the id function over a functor,
the functor that we get back should be the same as the original functor. If
we write that a bit more formally, it means that fmap id = id. So
essentially, this says that if we do fmap id over a functor, it should be the
same as just calling id on the functor. Id is the identity function, which just
returns its parameter unmodified. It can also be written as \x -> x.

- E.g.

2. fmap fusion/fmap is a homomorphism:

- The second law says that composing two functions and then mapping the
resulting function over a functor should be the same as first mapping one

CSCC24 Week 6 Notes
3

function over the functor and then mapping the other one. Formally
written, that means that fmap (f . g) = fmap f . fmap g. Or to write it in
another way, for any functor F, the following should hold:
fmap (f . g) F = fmap f (fmap g F).

- Doing fmap g (fmap f xs) should get the same result as doing
fmap (\x -> g (f x)) xs
I.e.
fmap g . fmap f = fmap (g . f)

- Note: We can do fmap Just [1]. This is because types are functions.
E.g.

- Functor on its own does not have much basic practical use, apart from providing a

common name “fmap”, but it is much more useful when combined with the Applicative
and Monad methods. It also has an advanced practical use. On the other hand, Functor
is extremely important in category theory.

Applicative:
- An Applicative Functor is a normal Functor with some extra features provided by the

Applicative Type Class. It is found in the Control.Applicative module and to use it, we
need to do import Control.Applicative.

- The class is defined like such:
class (Functor f) => Applicative f where
 pure :: a -> f a → Pure takes a value and returns a functor of that value.
 (<*>) :: f (a -> b) -> f a -> f b → <*> takes a functor with a function in it and another
 functor and applies the function to the second functor.
 liftA2 :: (a -> b -> c) -> f a -> f b -> f c → liftA2 takes a function and 2 functors and
 applies the function on the 2 functors.
 -- And default implementations because <*> and liftA2 are equivalent.
 liftA2 f as bs = fmap f as <*> bs
 fs <*> as = liftA2 (\f a -> f a) fs as
 -- And a couple of other methods with easy default implementations.

Looking at the first line, it states the definition of the Applicative class and it also
introduces a class constraint. It says that if we want to make a type constructor part of
the Applicative typeclass, it has to be in Functor first. That's why if we know that if a type
constructor is part of the Applicative typeclass, it's also in Functor, so we can use fmap
on it.

CSCC24 Week 6 Notes
4

The first method it defines is called pure. Its type declaration is pure :: a -> f a. “f” plays
the role of our applicative functor instance here. pure should take a value of any type
and return an applicative functor with that value inside it. We take a value and we wrap it
in an applicative functor that has that value as the result inside it.

pure for [], Maybe, and Either e work as follows:
-- [] version
pure a = [a]

-- Maybe version
pure a = Just a

-- Either e version
pure a = Right a

pure plays two roles:

1. The degenerate case when you have a 0-ary function and 0 lists, kind of.
2-ary, liftA2 :: (t1 -> t2 -> a) -> f t1 -> f t2 -> f a
1-ary, fmap :: (t1 -> a) > f t1 -> f a
0-ary, pure :: a -> f a

2. fmap can be derived from pure and <*>.
I.e. fmap f xs = pure f <*> xs

The second function it defines is <*>. It has a type declaration of f (a -> b) -> f a -> f b.
<*> is sort of a beefed up fmap. Whereas fmap takes a function and a functor and
applies the function inside the functor, <*> takes a functor that has a function in it and
another functor and sort of extracts that function from the first functor and then maps it
over the second one.
Note: We can use lambda functions with <*>.
E.g.

The third function it defines is liftA2. liftA2 just applies a function between two
applicatives, hiding the applicative style that we've become familiar with. The reason
we're looking at it is because it clearly showcases why applicative functors are more
powerful than just ordinary functors. With ordinary functors, we can just map functions
over one functor. But with applicative functors, we can apply a function between several
functors. It's also interesting to look at this function's type as (a -> b -> c) -> (f a -> f b ->
f c). When we look at it like this, we can say that liftA2 takes a normal binary function
and promotes it to a function that operates on two functors.

CSCC24 Week 6 Notes
5

E.g.
liftA2 (+) [1,2,3] [4,5,6]
= [1+4, 1+5, 1+6, 2+4, 2+5, 2+6, 3+4, 3+5, 3+6]
= [5,6,7,6,7,8,7,8,9]

E.g.
liftA2 (-) [10,20,30] [1,2,3]
= [10-1, 10-2, 10-3, 20-1, 20-2, 20-3, 30-1, 30-2, 30-3]
= [9,8,7,19,18,17,29,28,27]

Note: We can use lambda functions with liftA2.
E.g.

- Here is the Applicative instance implementation for Maybe.
instance Applicative Maybe where
 pure = Just
 Nothing <*> _ = Nothing
 (Just f) <*> something = fmap f something

First off, pure. We said earlier that it's supposed to take something and wrap it in an
applicative functor. We wrote pure = Just, because value constructors like Just are
normal functions. We could have also written pure x = Just x.

Next up, we have the definition for <*>. We can't extract a function out of a Nothing,
because it has no function inside it. So we say that if we try to extract a function from a
Nothing, the result is a Nothing.

If the first parameter is not a Nothing, but a Just with some function inside it, we say that
we then want to map that function over the second parameter. This also takes care of
the case where the second parameter is Nothing, because doing fmap with any function
over a Nothing will return a Nothing.

So for Maybe, <*> extracts the function from the left value if it's a Just and maps it over
the right value. If any of the parameters is Nothing, Nothing is the result.

CSCC24 Week 6 Notes
6

E.g.
Notice that if there’s Nothing on either side of the <*>, the result is nothing.

Notice that the 2 statements below give the same result.

- The Applicative methods should satisfy the following axioms:
1. Applicative subsumes Functor

fmap f xs = pure f <*> xs
2. Applicative left-identity

pure id <*> xs = xs
-- Compare with fmap identity! fmap id xs = xs

3. Applicative associativity, composition
gs <*> (fs <*> xs) = ((pure (.) <*> gs) <*> fs) <*> xs
 = (liftA2 (.) gs fs) <*> xs
-- Analogy: g (f x) = (g . f) x
-- It may help to elaborate the types. Assume:
-- xs :: f a
-- fs :: f (a -> b)
-- gs :: f (b -> c)
-- (.) :: (b -> c) -> (a -> b) -> (a -> c)
-- Try to determine the types of the subexpressions

4. pure fusion, pure is a homomorphism
pure f <*> pure x = pure (f x)
fmap f (pure x) = pure (f x)

5. pure interchange, almost right-identity
fs <*> pure x = pure (\f -> f x) <*> fs
 = fmap (\f -> f x) fs

- The first corollary is that the Applicative axioms imply the Functor axioms given fmap f xs
= pure f <*> xs.
Functor identity is immediate from Applicative left-identity. To deduce fmap fusion:
fmap g (fmap f xs) in Applicative terms
= pure g <*> (pure f <*> xs) associativity
= ((pure (.) <*> pure g) <*> pure f) <*> xs pure fusion
= (pure ((.) g) <*> pure f) <*> xs pure fusion
= pure ((.) g f) <*> xs infix notation
= pure (g . f) <*> xs in Functor terms
= fmap (g . f) xs

CSCC24 Week 6 Notes
7

- The second corollary is that
liftA3 (\x y z -> g x (f y z)) xs ys zs
can be done by the following two equivalent ways:

1. (fmap (\x y z -> g x (f y z)) xs <*> ys) <*> zs
2. fmap g xs <*> (fmap f ys <*> zs)

